
Package: chessboard (via r-universe)
October 10, 2024

Type Package

Title Create Network Connections Based on Chess Moves

Version 0.1.0.9000

Description Provides functions to work with directed (asymmetric) and
undirected (symmetric) spatial networks. It makes the creation
of connectivity matrices easier, i.e. a binary matrix of
dimension n x n, where n is the number of nodes (sampling
units) indicating the presence (1) or the absence (0) of an
edge (link) between pairs of nodes. Different network objects
can be produced by 'chessboard': node list, neighbor list, edge
list, connectivity matrix. It can also produce objects that
will be used later in Moran's Eigenvector Maps (Dray et al.
(2006) <doi:10.1016/j.ecolmodel.2006.02.015>) and Asymetric
Eigenvector Maps (Blanchet et al. (2008)
<doi:10.1016/j.ecolmodel.2008.04.001>), methods available in
the package 'adespatial' (Dray et al. (2023)
<https://CRAN.R-project.org/package=adespatial>). This work is
part of the FRB-CESAB working group Bridge
<https://www.fondationbiodiversite.fr/en/the-frb-in-action/
programs-and-projects/le-cesab/bridge/>.

URL https://github.com/frbcesab/chessboard

BugReports https://github.com/frbcesab/chessboard/issues

License GPL (>= 2)

Encoding UTF-8

Imports dplyr, ggplot2, magrittr, rlang, sf, tidyr

Suggests knitr, igraph, patchwork, rmarkdown, testthat (>= 3.0.0)

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://frbcesab.r-universe.dev

1

https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1016/j.ecolmodel.2008.04.001
https://CRAN.R-project.org/package=adespatial
https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/bridge/
https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/bridge/
https://github.com/frbcesab/chessboard
https://github.com/frbcesab/chessboard/issues

2 append_edge_lists

RemoteUrl https://github.com/FRBCesab/chessboard

RemoteRef HEAD

RemoteSha 8506b8b96ed0cf61f32bc831711681ab3d340af6

Contents
append_edge_lists . 2
append_matrix . 3
bishop . 4
bishop_left . 6
bishop_right . 8
connectivity_matrix . 9
create_edge_list . 11
create_node_labels . 12
distance_euclidean . 14
edges_to_sf . 15
edges_weights_matrix . 17
edges_weights_vector . 18
fool . 19
geom_edges . 21
geom_neighbors . 22
geom_node . 23
get_node_list . 24
gg_chessboard . 24
gg_matrix . 25
knight . 26
knight_left . 28
knight_right . 30
matrix_to_edge_list . 32
nodes_by_edges_matrix . 33
pawn . 34
queen . 35
rook . 37
spatial_weights_matrix . 39
wizard . 40

Index 43

append_edge_lists Append several edge lists

Description

Appends several edge lists created by create_edge_list(). Merged edges will be ordered and
duplicates will be removed.

append_matrix 3

Usage

append_edge_lists(...)

Arguments

... one or several edge lists data.frame. Outputs of the function create_edge_list().

Value

A data.frame with n rows (where n is the total number of edges) and the following two columns:

• from: the node label of one of the two endpoints of the edge

• to: the node label of the other endpoint of the edge

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

edges_1 <- create_edge_list(nodes, method = "pawn", directed = TRUE)
edges_2 <- create_edge_list(nodes, method = "bishop", directed = TRUE)

edges <- append_edge_lists(edges_1, edges_2)

append_matrix Combine several connectivity matrices

Description

Combines different connectivity matrices by row names and column names by performing a 2-
dimensional full join. Missing edges are filled with 0 (default) or NA (argument na_to_zero).

Usage

append_matrix(..., na_to_zero = TRUE)

Arguments

... one or several matrix objects created by connectivity_matrix().

na_to_zero a logical value. If TRUE (default) missing edges are coded as 0. Otherwise they
will be coded as NA.

4 bishop

Value

A connectivity matrix of dimensions n x n, where n is the total number of unique nodes across all
provided matrices.

Examples

mat1 <- matrix(rep(1, 9), nrow = 3)
colnames(mat1) <- c("A", "B", "C")
rownames(mat1) <- c("A", "B", "C")
mat1

mat2 <- matrix(rep(1, 9), nrow = 3)
colnames(mat2) <- c("D", "E", "F")
rownames(mat2) <- c("D", "E", "F")
mat2

mat3 <- matrix(rep(1, 9), nrow = 3)
colnames(mat3) <- c("F", "G", "H")
rownames(mat3) <- c("F", "G", "H")
mat3

append_matrix(mat1, mat2, mat3)

append_matrix(mat1, mat2, mat3, na_to_zero = FALSE)

bishop Find neighbors according to bishop movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the bishop
movement. This movement is derived from the chess game. The bishop can move along the two
diagonals.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

bishop(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

bishop 5

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- bishop(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- bishop(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

6 bishop_left

Directed (default orientation) ----
neighbors <- bishop(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- bishop(nodes, focus, degree = 3, directed = TRUE,

reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

bishop_left Find neighbors according to bishop left movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the bishop left
movement. This movement is derived from the bishop() method and can only move along the
bottom-right to top-left diagonal.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

bishop_left(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

bishop_left 7

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- bishop_left(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- bishop_left(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- bishop_left(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- bishop_left(nodes, focus, degree = 3, directed = TRUE,

reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

8 bishop_right

bishop_right Find neighbors according to bishop right movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the bishop right
movement. This movement is derived from the bishop() method and can only move along the
bottom-left to top-right diagonal.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

bishop_right(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

connectivity_matrix 9

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- bishop_right(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- bishop_right(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- bishop_right(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- bishop_right(nodes, focus, degree = 3, directed = TRUE,

reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

connectivity_matrix Create a connectivity matrix from an edge list

Description

Converts an edge list to an connectivity matrix (also known as adjacency matrix).

10 connectivity_matrix

Usage

connectivity_matrix(
edges,
lower = TRUE,
upper = TRUE,
diag = TRUE,
na_to_zero = TRUE

)

Arguments

edges a data.frame with the following two columns: from (the first node of the edge)
and to (the second node of the edge). The output of the functions create_edge_list()
or append_edge_lists().

lower a logical value. If TRUE (default), keep values in the lower triangle of the
matrix. Otherwise they will be replaced by NA (or 0).

upper a logical value. If TRUE (default), keep values in the upper triangle of the
matrix. Otherwise they will be replaced by NA (or 0).

diag a logical value. If TRUE (default), keep values in the diagonal of the matrix.
Otherwise they will be replaced by NA (or 0).

na_to_zero a logical value. If TRUE (default), missing edges are coded as 0. Otherwise
they will be coded as NA.

Value

A connectivity matrix of dimensions n x n, where n is the number of nodes.

Examples

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select first location ----
adour_sites <- adour_sites[adour_sites$"location" == 1,]

Create node labels ----
adour_nodes <- create_node_labels(data = adour_sites,

location = "location",
transect = "transect",
quadrat = "quadrat")

Find edges with 1 degree of neighborhood (pawn method) ----
adour_edges <- create_edge_list(adour_nodes, method = "pawn",

directed = TRUE)

Get connectivity matrix ----
connectivity_matrix(adour_edges)

create_edge_list 11

Get connectivity matrix ----
connectivity_matrix(adour_edges, na_to_zero = FALSE)

create_edge_list Create an edge list

Description

Creates a list of edges (links) between nodes (sampling units) based on the detection of neighbors
and according to three neighborhood rules:

1. Degree of neighborhood (argument degree): the number of adjacent nodes that will be used
to create direct edges. If degree = 1, only nodes directly adjacent to the focal node will be
considered as neighbors.

2. Orientation of neighborhood (argument method): can neighbors be detecting horizontally
and/or vertically and/or diagonally? The package chessboard implements all possible orien-
tations derived from the chess game.

3. Direction of neighborhood (arguments directed and reverse): does the sampling design
has a direction? If so (directed = TRUE), the network will be considered as directed and the
direction will follow the order of node labels in both axes (except if reverse = TRUE).

It’s important to note that, even the package chessboard is designed to deal with spatial networks,
this function does not explicitly use spatial coordinates to detect neighbors. Instead it uses the node
labels. The function create_node_labels() must be used before this function to create node
labels.

Usage

create_edge_list(
nodes,
method,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

method a character of length 1. The method used to detect neighbors. One among
'pawn', 'fool', 'rook', 'bishop', 'bishop_left', 'bishop_right', 'knight',
'knight_left', 'knight_right', 'queen', 'wizard'. For further informa-
tion, see the functions of the same name (i.e. pawn(), rook(), etc.).

degree an integer of length 1. The maximum number of neighbors to search for.

12 create_node_labels

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Value

A data.frame with n rows (where n is the number of edges) and the following two columns:

• from: the node label of one of the two endpoints of the edge

• to: the node label of the other endpoint of the edge

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

edges <- create_edge_list(nodes, method = "pawn", directed = TRUE)
edges

edges <- create_edge_list(nodes, method = "bishop", directed = TRUE)
edges

create_node_labels Create unique node labels

Description

Creates unique node (sampling units) labels in directed (or undirected) spatial (or not) networks.

It’s important to note that, even the package chessboard is designed to deal with spatial networks,
it does not explicitly use spatial coordinates. Every functions of the package will use the node
labels.

To work, the package chessboard requires that the sampling has two dimensions: one from bottom
to top (called quadrats), and one from left to right (called transects). If the sampling has been
conducted along one single dimension (transects or quadrats), this function will create a fictitious
label for the missing dimension. In other words, the package chessboard can work with sam-
pling designs such as regular grids (two dimensions), transects (one dimension), and quadrats (one
dimension).

create_node_labels 13

In addition, the package can also deal with multiple locations. In that case, users will need to use
the argument location.

The node labels will be of the form: 1-2, where 1 is the identifier of the transect (created by the
function if missing), and 2, the identifier of the quadrat (created by the function if missing).

Usage

create_node_labels(data, location, transect, quadrat)

Arguments

data a data.frame with at least one column, 'transect' or 'quadrat'. If only one
column is provided and transect or quadrat is NULL, the network will be con-
sidered as one-dimensional. If data contains both 'transect' and 'quadrat'
columns, the network will be considered as two-dimensional. The data.frame
can contain additional columns.

location a character of length 1. The name of the column that contains location identi-
fiers. If missing (or NULL), a unique location identifier will be created and named
1 (for the purpose of the package only). This argument is optional if the sam-
pling ha been conducted at one location, but required if the survey is structured
in multiple locations.

transect a character of length 1. The name of the column that contains transect identi-
fiers. If missing (or NULL), a unique transect identifier will be created and named
1 (for the purpose of the package only). If missing, the network will be consid-
ered as one-dimensional.

quadrat a character of length 1. The name of the column that contains quadrat identi-
fiers. If missing (or NULL), a unique quadrat identifier will be created and named
1 (for the purpose of the package only). If missing, the network will be consid-
ered as one-dimensional.

Value

A data.frame with at least the four following columns:

• node, the node label

• location, the identifier of the location

• transect, the identifier of the transect

• quadrat, the identifier of the quadrat Other columns present in the original dataset will also
be added.

Examples

library("chessboard")

Two-dimensional sampling ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)
sites_infos

14 distance_euclidean

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

nodes

gg_chessboard(nodes)

One-dimensional sampling (only transects) ----
transects_only <- data.frame("transect" = 1:5)

nodes <- create_node_labels(transects_only,
transect = "transect")

nodes

gg_chessboard(nodes)

One-dimensional sampling (only quadrats) ----
quadrats_only <- data.frame("quadrat" = 1:5)

nodes <- create_node_labels(quadrats_only,
quadrat = "quadrat")

nodes

gg_chessboard(nodes)

distance_euclidean Compute the pairwise Euclidean distance

Description

Computes the Euclidean distance between two nodes using the function sf::st_distance(). If
the CRS is not a Cartesian system, the Great Circle distance will be used instead.

Usage

distance_euclidean(sites, ...)

Arguments

sites an sf object of type POINT. A spatial object containing coordinates of sites. Note
that the first column must be the node label created by the function create_node_labels().

... other argument to pass to sf::st_distance().

Value

A three-column data.frame with:

• from, the first node
• to, the second node
• weight, the Euclidean distance between the two nodes

edges_to_sf 15

Examples

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select the 15 first sites ----
adour_sites <- adour_sites[1:15,]

Create node labels ----
adour_sites <- create_node_labels(adour_sites,

location = "location",
transect = "transect",
quadrat = "quadrat")

Convert sites to sf object (POINTS) ----
adour_sites <- sf::st_as_sf(adour_sites, coords = c("longitude", "latitude"),

crs = "epsg:2154")

Compute distances between pairs of sites ----
weights <- distance_euclidean(adour_sites)

head(weights)

edges_to_sf Convert edge list to spatial object

Description

Converts an edge list to an sf spatial object of type LINESTRING with one row per edge.

Usage

edges_to_sf(edges, sites)

Arguments

edges a data.frame with the following two columns: from (the first node of the edge)
and to (the second node of the edge). The output of the functions create_edge_list()
or append_edge_lists().

sites an sf object of type POINT. A spatial object with coordinates of sites (nodes).
Note that the first column must be the node labels.

Value

An sf spatial object of type LINESTRING where the number of rows correspond to the number of
edges.

16 edges_to_sf

Examples

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select first location ----
adour_sites <- adour_sites[adour_sites$"location" == 1,]

Create node labels ----
adour_nodes <- create_node_labels(data = adour_sites,

location = "location",
transect = "transect",
quadrat = "quadrat")

Find edges with 1 degree of neighborhood (pawn method) ----
adour_edges <- create_edge_list(adour_nodes, method = "pawn",

directed = TRUE)

Convert sites to spatial POINT ----
adour_sites_sf <- sf::st_as_sf(adour_nodes, coords = 5:6, crs = "epsg:2154")

Convert edges to spatial LINESTRING ----
edges_sf <- edges_to_sf(adour_edges, adour_sites_sf)
head(edges_sf)

Visualization ----
plot(sf::st_geometry(adour_sites_sf), pch = 19)
plot(sf::st_geometry(edges_sf), add = TRUE)

Find edges with 1 degree of neighborhood (pawn and bishop methods) ----
adour_edges_1 <- create_edge_list(adour_nodes, method = "pawn",

directed = TRUE)
adour_edges_2 <- create_edge_list(adour_nodes, method = "bishop",

directed = TRUE)

Append edges ----
adour_edges <- append_edge_lists(adour_edges_1, adour_edges_2)

Convert sites to spatial POINT ----
adour_sites_sf <- sf::st_as_sf(adour_nodes, coords = 5:6, crs = "epsg:2154")

Convert edges to spatial LINESTRING ----
edges_sf <- edges_to_sf(adour_edges, adour_sites_sf)
head(edges_sf)

Visualization ----
plot(sf::st_geometry(adour_sites_sf), pch = 19)
plot(sf::st_geometry(edges_sf), add = TRUE)

edges_weights_matrix 17

edges_weights_matrix Create an edges weights matrix

Description

Creates an edges weights matrix from the output of distance_euclidean().

Usage

edges_weights_matrix(distances, lower = TRUE, upper = TRUE, diag = TRUE)

Arguments

distances a data.frame with the following three columns: from (the first node of the
edge), to (the second node of the edge), and weight (the weight of the edge
between the two nodes, e.g. a distance).

lower a logical value. If TRUE (default), keep values in the lower triangle of the
matrix. Otherwise they will be replaced by NA.

upper a logical value. If TRUE (default), keep values in the upper triangle of the
matrix. Otherwise they will be replaced by NA.

diag a logical value. If TRUE (default), keep values in the diagonal of the matrix.
Otherwise they will be replaced by NA.

Value

An edges weights matrix of dimensions n x n, where n is the number of nodes (sites).

Examples

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select the 15 first sites ----
adour_sites <- adour_sites[1:15,]

Create node labels ----
adour_sites <- create_node_labels(adour_sites,

location = "location",
transect = "transect",
quadrat = "quadrat")

Convert sites to sf object (POINTS) ----
adour_sites_sf <- sf::st_as_sf(adour_sites,

coords = c("longitude", "latitude"),
crs = "epsg:2154")

18 edges_weights_vector

Compute distances between pairs of sites along the Adour river ----
adour_dists <- distance_euclidean(adour_sites_sf)

Create Edges weights matrix ----
edges_weights_matrix(adour_dists)

Create Edges weights matrix (with options) ----
edges_weights_matrix(adour_dists, lower = FALSE)
edges_weights_matrix(adour_dists, upper = FALSE)
edges_weights_matrix(adour_dists, diag = FALSE)

edges_weights_vector Create an edges weights vector

Description

Creates an edges weights vector that can be used in aem() of the package adespatial. Resulting
edges weights equal to 0 will be replaced by 4 x max(w), where max(w) is the maximal weight in
the matrix.

Usage

edges_weights_vector(x, y)

Arguments

x a list of length 2. The nodes_by_edges matrix returned by nodes_by_edges_matrix()
(or aem.build.binary() of the package adespatial).

y a data.frame with the following three columns: from (the first node of the
edge), to (the second node of the edge), and weight (the weight of the edge
between the two nodes, e.g. a distance).

Value

An edges weights vector.

Examples

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select the 15 first sites ----
adour_sites <- adour_sites[1:15,]

Create node labels ----
adour_sites <- create_node_labels(adour_sites,

location = "location",

fool 19

transect = "transect",
quadrat = "quadrat")

Convert sites to sf object (POINTS) ----
adour_sites_sf <- sf::st_as_sf(adour_sites,

coords = c("longitude", "latitude"),
crs = "epsg:2154")

Create edges based on the pawn move (directed network) ----
adour_edges <- create_edge_list(adour_sites, method = "pawn",

directed = TRUE)

Create nodes-by-edges matrix ----
adour_matrix <- nodes_by_edges_matrix(adour_edges)

Compute Euclidean distances between pairs of sites ----
adour_dists <- distance_euclidean(adour_sites_sf)

Create Edges weights vector ----
edges_weights_vector(adour_matrix, adour_dists)

fool Find neighbors according to fool movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the fool move-
ment. This movement is derived from the chess game. The fool can only move horizontally, i.e.
through a quadrat.
The detection of neighbors using the fool method can work with two-dimensional sampling (both
transects and quadrats) and one-dimensional sampling of type transects-only. For sampling of
type quadrats-only, please use the function pawn().

Usage

fool(nodes, focus, degree = 1, directed = FALSE, reverse = FALSE, self = FALSE)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

20 fool

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- fool(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- fool(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- fool(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- fool(nodes, focus, degree = 3, directed = TRUE, reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

geom_edges 21

geom_edges Link neighbors by arrow on a chessboard

Description

Links neighbors (cells) on a chessboard plotted with gg_chessboard().

Usage

geom_edges(nodes, focus, neighbors)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output if the function create_node_labels().

focus an character of length 1. The node label to be emphasized on the chessboard.
Must exist in the nodes object.

neighbors a data.frame with the following at least three columns: node, transect, and
quadrats. See pawn(), fool(), etc. for further information.

Value

A geom_segment that must be added to a ggplot2 object.

Examples

library("chessboard")

sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

neighbors <- wizard(nodes, focus = focus, degree = 4, directed = FALSE,
reverse = TRUE)

gg_chessboard(nodes) +
geom_neighbors(nodes, neighbors) +
geom_edges(nodes, focus, neighbors) +
geom_node(nodes, focus)

22 geom_neighbors

geom_neighbors Highlight neighbors on a chessboard

Description

Highlights neighbors (cells) on a chessboard plotted with gg_chessboard().

Usage

geom_neighbors(nodes, neighbors)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output if the function create_node_labels().

neighbors a data.frame with the following at least three columns: node, transect, and
quadrats. See pawn(), fool(), etc. for further information.

Value

A geom_point that must be added to a ggplot2 object.

Examples

library("chessboard")

Two-dimensional sampling ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

neighbors <- pawn(nodes, focus = "2-3")

gg_chessboard(nodes) +
geom_node(nodes, "2-3") +
geom_neighbors(nodes, neighbors)

geom_node 23

geom_node Highlight a node on a chessboard

Description

Highlights a node (cell) on a chessboard plotted with gg_chessboard().

Usage

geom_node(nodes, focus)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output if the function create_node_labels().

focus an character of length 1. The node label to be emphasized on the chessboard.
Must exist in the nodes object.

Value

A list of two geom_point that must be added to a ggplot2 object.

Examples

library("chessboard")

Two-dimensional sampling ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

gg_chessboard(nodes) +
geom_node(nodes, "2-3")

One-dimensional sampling (only transects) ----
sites_infos <- data.frame("transect" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect")

gg_chessboard(nodes) +
geom_node(nodes, "3-1")

24 gg_chessboard

get_node_list Get the list of nodes

Description

Retrieves the node list by selecting and ordering the column node of the output of the function
create_node_labels().

Usage

get_node_list(nodes)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

Value

A vector of node labels.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

get_node_list(nodes)

gg_chessboard Plot a sampling as a chessboard

Description

Plots a sampling as a chessboard of dimensions t x q, with t, the number of transects, and q, the
number of quadrats.

Usage

gg_chessboard(nodes, xlab = "Transect", ylab = "Quadrat")

gg_matrix 25

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output if the function create_node_labels().

xlab a character of length 1. The title of the top axis. Default is 'Transect'.

ylab a character of length 1. The title of the left axis. Default is 'Quadrat'.

Value

A ggplot2 object.

Examples

library("chessboard")

Two-dimensional sampling ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

gg_chessboard(nodes)

One-dimensional sampling (only transects) ----
sites_infos <- data.frame("transect" = 1:5)

nodes <- create_node_labels(data = sites_infos,
transect = "transect")

gg_chessboard(nodes)

One-dimensional sampling (only quadrats) ----
sites_infos <- data.frame("quadrat" = 1:5)

nodes <- create_node_labels(data = sites_infos,
quadrat = "quadrat")

gg_chessboard(nodes)

gg_matrix Plot a connectivity or a nodes-by-edges matrix

Description

Plots an connectivity or a nodes-by-edges matrix.

Usage

gg_matrix(x, title)

26 knight

Arguments

x a matrix object. An adjacency or nodes-by-edges matrix.

title a character of length 1. The caption of the figure.

Value

A ggplot2 object.

Examples

library("chessboard")

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select first location ----
#adour_sites <- adour_sites[adour_sites$"location" == 1,]

Create node labels ----
adour_nodes <- create_node_labels(data = adour_sites,

location = "location",
transect = "transect",
quadrat = "quadrat")

Find edges with 1 degree of neighborhood (queen method) ----
adour_edges <- create_edge_list(adour_nodes, method = "queen",

directed = FALSE)

Get connectivity matrix ----
adour_con_matrix <- connectivity_matrix(adour_edges)

Visualize matrix ----
gg_matrix(adour_con_matrix, title = "Connectivity matrix") +

ggplot2::theme(axis.text = ggplot2::element_text(size = 6))

knight Find neighbors according to knight movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the knight
movement. This movement is derived from the chess game. The knight is the difference between
the wizard() and the queen().

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

knight 27

Usage

knight(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

28 knight_left

Default settings ----
neighbors <- knight(nodes, focus, degree = 2)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- knight(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- knight(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- knight(nodes, focus, degree = 3, directed = TRUE,

reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

knight_left Find neighbors according to knight left movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the knight left
movement. This movement is derived from the knight() method.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

knight_left(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

knight_left 29

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- knight_left(nodes, focus, degree = 2)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- knight_left(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

30 knight_right

Directed (default orientation) ----
neighbors <- knight_left(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- knight_left(nodes, focus, degree = 3, directed = TRUE,

reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

knight_right Find neighbors according to knight right movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the knight right
movement. This movement is derived from the knight() method.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

knight_right(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

knight_right 31

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- knight_right(nodes, focus, degree = 2)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- knight_right(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- knight_right(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- knight_right(nodes, focus, degree = 3, directed = TRUE,

reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

32 matrix_to_edge_list

matrix_to_edge_list Convert an connectivity matrix to an edge list

Description

Converts a connectivity matrix to an edge list. This function allows to create the same edge list as
the one obtained with create_edge_list().

Usage

matrix_to_edge_list(x, all = FALSE)

Arguments

x a matrix object. The connectivity matrix to be converted in an edge list.

all a logical value. If FALSE (default), removes missing edges.

Value

A data.frame with two (or three) columns:

• from: label of one of the two nodes of the edge

• to: label of the other node of the edge

• edge: 0 (no edge) or 1 (edge). This column is returned only if all = TRUE.

Examples

library("chessboard")

Two-dimensional sampling ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)
sites_infos

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

edges <- create_edge_list(nodes, method = "pawn", directed = TRUE)

conn_matrix <- connectivity_matrix(edges)

Convert back to edge list ----
new_edges <- matrix_to_edge_list(conn_matrix)
new_edges

Check ----
identical(edges, new_edges)

nodes_by_edges_matrix 33

nodes_by_edges_matrix Create a nodes-by-edges matrix

Description

Creates a nodes-by-edges matrix that will be used by aem() of the package adespatial. This
function creates the same output as aem.build.binary() of the package adespatial but works in
a different way: it’s only based on node labels (not on coordinates). Also, this function adds labels
to nodes and edges.

Usage

nodes_by_edges_matrix(edges)

Arguments

edges a data.frame with the following two columns: from (the first node of the edge)
and to (the second node of the edge).

Value

A list of two elements:

• se.mat: the nodes-by-edges matrix of dimensions n x k, where n is the number of nodes and
k the number of edges (including the edge between the fictitious origin and the first site);

• edges: a data.frame of edge list.

Examples

library("chessboard")

Two-dimensional sampling ----
sites_infos <- expand.grid("transect" = 1:3, "quadrat" = 1:5)
sites_infos

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

edges <- create_edge_list(nodes, method = "pawn", directed = TRUE)

Create nodes-by-edges matrix ----
nodes_by_edges_matrix(edges)

34 pawn

pawn Find neighbors according to pawn movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the fool move-
ment. This movement is orthogonal to the fool() function. The pawn can only move vertically,
i.e. through a transect.

The detection of neighbors using the fool method can work with two-dimensional sampling (both
transects and quadrats) and one-dimensional sampling of type quadrats-only. For sampling of
type transects-only, please use the function fool().

Usage

pawn(nodes, focus, degree = 1, directed = FALSE, reverse = FALSE, self = FALSE)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

queen 35

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- pawn(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- pawn(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- pawn(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- pawn(nodes, focus, degree = 3, directed = TRUE, reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

queen Find neighbors according to queen movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the queen
movement. This movement is derived from the chess game. The queen is a combination of the
bishop() and the rook() and can find neighbors horizontally, vertically, and diagonally.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

36 queen

Usage

queen(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

rook 37

Default settings ----
neighbors <- queen(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- queen(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- queen(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----
neighbors <- queen(nodes, focus, degree = 3, directed = TRUE, reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

rook Find neighbors according to rook movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the rook move-
ment. This movement is derived from the chess game. The rook can move horizontally and verti-
cally. It’s a combination of the pawn() and the fool() functions.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

rook(nodes, focus, degree = 1, directed = FALSE, reverse = FALSE, self = FALSE)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

38 rook

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- rook(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- rook(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- rook(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----

spatial_weights_matrix 39

neighbors <- rook(nodes, focus, degree = 3, directed = TRUE, reverse = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

spatial_weights_matrix

Create a spatial weights matrix

Description

Creates a spatial weights matrix by multiplying an adjacency (connectivity) matrix (see connectivity_matrix())
and an edges weights matrix (see edges_weights_matrix()). Resulting spatial weights equal to 0
will be replaced by 4 x max(w), where max(w) is the maximal weight in the matrix.

Usage

spatial_weights_matrix(x, y)

Arguments

x an adjacency matrix of dimensions n x n, where n is the number of nodes
(sites). The output of connectivity_matrix().

y an edges weight matrix of dimensions n x n, where n is the number of nodes
(sites). The output of edges_weights_matrix().

Value

A spatial weights matrix of dimensions n x n, where n is the number of nodes (sites).

Examples

Import Adour sites ----
path_to_file <- system.file("extdata", "adour_survey_sampling.csv",

package = "chessboard")
adour_sites <- read.csv(path_to_file)

Select the 15 first sites ----
adour_sites <- adour_sites[1:15,]

Create node labels ----
adour_sites <- create_node_labels(adour_sites,

location = "location",
transect = "transect",
quadrat = "quadrat")

Create edges based on the pawn move (directed network) ----
adour_edges <- create_edge_list(adour_sites, method = "pawn",

directed = TRUE)

40 wizard

Get connectivity matrix ----
adour_adjacency <- connectivity_matrix(adour_edges)

Convert sites to sf object (POINTS) ----
adour_sites_sf <- sf::st_as_sf(adour_sites,

coords = c("longitude", "latitude"),
crs = "epsg:2154")

Compute distances between pairs of sites along the Adour river ----
adour_dists <- distance_euclidean(adour_sites_sf)

Create Edges weights matrix ----
adour_weights <- edges_weights_matrix(adour_dists)

Create Spatial weights matrix ----
spatial_weights_matrix(adour_adjacency, adour_weights)

wizard Find neighbors according to wizard movement

Description

For one node (argument focus), finds neighbors among a list of nodes according to the wizard
movement. This movement is a combination of the queen() and the knight() pieces from the
chess game and can move in all directions.

The detection of neighbors using this method can only work with two-dimensional sampling (both
transects and quadrats). For sampling of type transects-only or quadrats-only, please use the
functions fool() or pawn(), respectively.

Usage

wizard(
nodes,
focus,
degree = 1,
directed = FALSE,
reverse = FALSE,
self = FALSE

)

Arguments

nodes a data.frame with (at least) the following three columns: node, transect, and
quadrats. Must be the output of the function create_node_labels().

focus an character of length 1. The node label for which the neighbors must be
found. Must exist in the nodes object.

degree an integer of length 1. The maximum number of neighbors to search for.

wizard 41

directed a logical of length 1. If FALSE (default), search for neighbors in all directions
(undirected network). Otherwise, the network will be considered as directed
according to the orientations of the network. The default orientation follows the
order of node labels in both axes.

reverse a logical of length 1. If TRUE, change the default orientation of the network.
This argument is ignored if directed = FALSE. See examples for further detail.

self a logical of length 1. If TRUE, a node can be its own neighbor. Default is
FALSE.

Details

This function is internally called by create_edge_list() but it can be directly used to 1) under-
stand the neighbors detection method, and 2) to check detected neighbors for one particular node
(focus).

Value

A subset of the nodes (data.frame) where each row is a neighbor of the focal node.

Examples

library("chessboard")

Two-dimensional sampling (only) ----
sites_infos <- expand.grid("transect" = 1:9, "quadrat" = 1:9)

nodes <- create_node_labels(data = sites_infos,
transect = "transect",
quadrat = "quadrat")

focus <- "5-5"

Default settings ----
neighbors <- wizard(nodes, focus)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Higher degree of neighborhood ----
neighbors <- wizard(nodes, focus, degree = 3)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (default orientation) ----
neighbors <- wizard(nodes, focus, degree = 3, directed = TRUE)
gg_chessboard(nodes) +

geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Directed (reverse orientation) ----

42 wizard

neighbors <- wizard(nodes, focus, degree = 3, directed = TRUE,
reverse = TRUE)

gg_chessboard(nodes) +
geom_node(nodes, focus) +
geom_neighbors(nodes, neighbors)

Index

append_edge_lists, 2
append_edge_lists(), 10, 15
append_matrix, 3

bishop, 4
bishop(), 6, 8, 35
bishop_left, 6
bishop_right, 8

connectivity_matrix, 9
connectivity_matrix(), 3, 39
create_edge_list, 11
create_edge_list(), 2, 3, 5, 7, 8, 10, 15, 20,

27, 29, 31, 32, 34, 36, 38, 41
create_node_labels, 12
create_node_labels(), 5, 6, 8, 11, 14, 19,

21–25, 27, 29, 30, 34, 36, 37, 40

distance_euclidean, 14
distance_euclidean(), 17

edges_to_sf, 15
edges_weights_matrix, 17
edges_weights_matrix(), 39
edges_weights_vector, 18

fool, 19
fool(), 4, 6, 8, 21, 22, 26, 28, 30, 34, 35, 37,

40

geom_edges, 21
geom_neighbors, 22
geom_node, 23
get_node_list, 24
gg_chessboard, 24
gg_chessboard(), 21–23
gg_matrix, 25

knight, 26
knight(), 28, 30, 40
knight_left, 28

knight_right, 30

matrix_to_edge_list, 32

nodes_by_edges_matrix, 33

pawn, 34
pawn(), 4, 6, 8, 11, 19, 21, 22, 26, 28, 30, 35,

37, 40

queen, 35
queen(), 26, 40

rook, 37
rook(), 11, 35

sf::st_distance(), 14
spatial_weights_matrix, 39

wizard, 40
wizard(), 26

43

	append_edge_lists
	append_matrix
	bishop
	bishop_left
	bishop_right
	connectivity_matrix
	create_edge_list
	create_node_labels
	distance_euclidean
	edges_to_sf
	edges_weights_matrix
	edges_weights_vector
	fool
	geom_edges
	geom_neighbors
	geom_node
	get_node_list
	gg_chessboard
	gg_matrix
	knight
	knight_left
	knight_right
	matrix_to_edge_list
	nodes_by_edges_matrix
	pawn
	queen
	rook
	spatial_weights_matrix
	wizard
	Index

